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The statistical dynamical theory of X-ray diffraction is developed for a crystal

containing statistically distributed microdefects. Fourier-component equations

for coherent and diffuse (incoherent) scattered waves have been obtained in the

case of so-called triple-crystal diffractometry. New correlation lengths and areas

are introduced for characterization of the scattered volume.

1. Introduction

The statistical dynamical diffraction theory (SDDT) formu-

lated ®rst by Kato (1980a,b) is the general approach to the

description of the X-ray scattering by a crystal with randomly

distributed defects. Various authors (Becker & Al Haddad,

1989, 1990; Guigay, 1989; Guigay & Chukhovskii, 1992, 1995)

have obtained further modi®cations of the original Kato

treatment (Kato, 1980a,b).

Kato (1991) has proposed an approach based upon the

Green-function concept. In its original form, which is free

from the so-called Takagi±Taupin approximation, this theory

is too complex for practical applications. All above-mentioned

formulations of the SDDT have been developed for a point

source in Laue geometry (the case of a spherical wave).

HolyÂ (HolyÂ, 1982a,b; HolyÂ & Gabrielyan, 1987) developed

an alternative approach to SDDT based upon the mutual

coherency function. This approach was used (HolyÂ & Kubena,

1992; HolyÂ et al., 1992, 1993, 1994; Darhuber et al., 1997) for

the calculation of the distribution of diffuse scattered waves

within the framework of the kinematical diffraction theory

(Dederichs, 1971; Krivoglaz, 1996).

The X-ray diffraction theory of plane waves is more

important for practical purposes, since it takes into account

the angular distribution of the scattering intensity. Bushuev

(1989a,b) offered such a SDDT within the framework of

Kato's treatment (Kato, 1980a,b). Punegov (1990) developed

the equations of SDDT for heteroepitaxial systems non-

uniform in depth. In our comment (Pavlov & Punegov, 1997),

we noted that Chinese scientists (An et al., 1995) have

formulated this approach anew. Pavlov & Punegov (1998a,b)

have obtained the most general equations of SDDT for a

deformed crystal in the case of plane waves. Recently, Guigay

& Vartanyants (1999) have developed SDDT for large

correlation lengths.

The statistical theory of X-ray diffraction by non-uniform

and multilayer systems (Punegov, 1991a, 1993, 1994) has been

used for solving inverse problems of X-ray diffraction in cases

of laser heterostructures (Pavlov et al., 1995) and non-uniform

epitaxial layers with linear change of components with depth

(Punegov et al., 1996). Both the double- and the triple-crystal

diffractometry data must be allowed for the inverse problem

solving within the framework of the statistical theory of X-ray

diffraction. Using only double-crystal diffractometry data (An

et al., 1995; Li et al., 1995) does not enable one to obtain

reliable information on the structural characteristics of

epitaxial layers, since the scattering intensity involves both the

coherent and the diffuse components (Punegov, 1991b).

High-resolution triple-crystal diffractometry (Iida & Kohra,

1979; Zaumseil & Winter, 1982a,b; Lomov et al., 1985) gives

much more information about investigated structures with

defects than double-crystal diffractometry. However, to date,

any approach of Kato's variant of SDDT applied to triple-

crystal diffractometry has not been developed.

It should be noted that Bushuev (1988) has applied the

double-crystal diffractometry approach of SDDT to calculate

the triple-crystal diffractometry. He has modernized the

expression of the correlation length from ��!� to ��!; "�,
where ! is the angular deviation of a sample and " is the

angular deviation of an analyser crystal. However, such an

approach is a very strong semi-empirical simpli®cation.

This paper aims to develop the equations of SDDT

presented in Pavlov & Punegov (1998a,b) for the case of

triple-crystal diffractometry.

The organization of this paper is as follows. In x2, we

develop the theoretical formalism for X-ray dynamical

diffraction using the Fourier transform. In particular, we

obtain an integral solution for the Fourier components of the

diffracted and transmitted wave®elds. x3 examines the
² On leave from Syktyvkar State University, Oktyabrskii pr. 55, 167001
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coherent wave®eld within a crystal, including the case of a

semi-in®nite crystal. x4 discusses the diffuse wave®eld. Finally,

in x5, we present our concluding remarks.

2. Theoretical formalism for the Fourier components of
the wavefield

We consider dynamical X-ray diffraction in Bragg geometry

from a crystal containing statistically distributed defects. The

diffraction geometry and the parameters are shown in Fig. 1. A

monochromatic wave emanating from a monochromator is

incident on the entrance surface of the crystal, which is shaped

like a homogeneous crystalline layer with thickness l. This

layer has large extent in the direction of the axis X. The

incident divergent beam is restricted in both the X and Y

directions by using vertical and horizontal slits between the

monochromator and the crystal. We use the oblique coordi-

nates, S0 and SH (see Fig. 1), with unit vectors s0 � K0=jK0j
and sH � KH=jKH j.

The relationships between the oblique coordinates, S0 and

SH, and the Cartesian ones, X and Z, with the X axis oriented

along the crystal surface and the Z axis oriented into the

crystal (Pavlov & Punegov, 1998a,b), are:

x � s0 cos �B ÿ '� � � sh cos �B � '� �
z � s0 sin �B ÿ '� � ÿ sh sin �B � '� �;

(
�1�

�B is the Bragg angle. These relationships can be rewritten

using the asymmetry factor

b � sin �B ÿ '� �
sin �B � '� � �

sin �1� �
sin �2� �

(see Fig. 1):

s0 ÿ
sh

b
� z

sin �1

; bs0 ÿ sh �
z

sin �2

: �2�

Inside the crystal, the X-ray wave®eld is described by a system

of equations of dynamical diffraction (Takagi, 1969; Taupin,

1964; Afanas'ev & Kohn, 1971):

@E0

@s0

� i�

�
E0�0 �

i�

�
� �hC exp ih � �u� �Eh

@Eh

@sh

� i�

�
Eh �0 ÿ �h� � � i�

�
�hC exp ÿih � �u� �E0:

8>><>>: �3�

Here, E0 and Eh are the amplitudes of the transmitted and

diffracted waves, �h � ÿ2 sin 2�B!, ! � � ÿ �B is the devia-

tion angle of the investigated crystal from the Bragg position,

h is the diffraction vector, �0;h; �h are the Fourier components of

the susceptibility, � is the X-ray wavelength, C is the polar-

ization factor,

C � 1 � polarization

cos�2�B� � polarization;

�
and �u is the atomic displacement vector caused by statistically

distributed defects.

In the system of equations (3), we perform the following

substitution (Pavlov & Punegov, 1998a,b):

~E0 � E0 exp�ÿ�i�=���0�s0 ÿ sh=b��
� E0 exp�ÿ�i�=���0�z=sin �1��

~Eh � Eh exp�ÿ�i�=����0 ÿ �h��sh ÿ s0b��
� Eh exp��i�=����0 ÿ �h��z=sin �2��:

8>>>><>>>>: �4�

Thereafter, the system of equations (3) can be rewritten in the

form

@ ~E0�s0; sh�
@s0

� i�

�
� �hC exp�ih � �u� ~Eh�s0; sh�

� exp
i�

�

sh

b
ÿ s0

� �
��0�1� b� ÿ b�h�

� �
@ ~Eh�s0; sh�

@sh

� i�

�
�hC exp�ÿih � �u� ~E0�s0; sh�

� exp
i�

�
s0 ÿ

sh

b

� �
��0�1� b� ÿ b�h�

� �
;

8>>>>>>>>>>>><>>>>>>>>>>>>:
�5�

which allows an integral solution for ~E0;h to be obtained:

~E0 s0; sh� � � ~E0 ŝ0; ŝh� � � i
�

�
C

Zs0

ŝ0

� �h exp�ih � �u s00; sh� ��

� exp i
�

�

sh

b
ÿ s00

� �
��0�1� b� ÿ b�h�

n o
� ~Eh s00; sh� � ds00 �6a�

~Eh s0; sh� � � ~Eh �s0; �sh� � � i
�

�
C

Zsh

�sh

�h exp�ÿih � �u s0; s0h� ��

� exp i
�

�
s0 ÿ

s0h
b

� �
��0�1� b� ÿ b�h�

� �
� ~E0 s0; s0h� � ds0h: �6b�

We de®ne the boundary conditions as follows:

E0�z � 0, �ŝ0; ŝh�� � E
�in�
0 �x; 0�

Eh�z � l, ��s0; �sh�� � 0:
�7�

Here, E
�in�
0 �x; 0� is the amplitude of the incident wave on the

entrance surface. In comparison with our previous article

(Pavlov & Punegov, 1998a,b), we take into account the general

case of the inhomogeneous pseudo-plane incident wave. In the

rectangular coordinates (see Fig. 1), these solutions (6a), (6b)

can be rewritten as

~E0 x; z� � � ~E0 xÿ z cot �1; 0� �
� i

Rz
0

a �h exp�ih � �u x� z0 ÿ z� � cot �1; z0� ��

� exp ÿi�z0� � ~Eh x� z0 ÿ z� � cot �1; z0� � dz0 �8a�
~Eh x; z� � � ~Eh xÿ l ÿ z� � cot �2; l� �

� i
Rl
z

ah exp�ÿih � �u xÿ z0 ÿ z� � cot �2; z0� ��

� exp i�0z0� � ~E0 xÿ z0 ÿ z� � cot �2; z0� � dz0; �8b�
where



�0 � �

� sin �1

� 1� b� ��0 � 2b! sin�2�B��;

a0 �
��0

� sin �1

; ah �
��hC

� sin �2

; a �h �
�� �hC

� sin �1

: �9�

The amplitudes of the plane waves ~E0�x; z� and ~Eh�x; z� inside

the crystal can be represented by the appropriate Fourier

integrals. Deviation vectors q0 and qh are perpendicular to the

average wave vectors K0 and KH, respectively (see Appendix

A and Fig. 1):

~E0�x; z� � �1=2�� R dq0x
~E0�q0x

; z� exp�iq0x
x� �10a�

~Eh�x; z� � �1=2�� R dqhx
~Eh�qhx

; z� exp�iqhx
x�: �10b�

The inverse Fourier transformation offers the amplitude of the

plane waves propagating in the (K0 + q0) and (KH + qh)

directions, respectively.

~E0�q0x
; z� � R dx ~E0�x; z� exp�ÿiq0x

x� �11a�
~Eh�qhx

; z� � R dx ~Eh�x; z� exp�ÿiqhx
x�: �11b�

Usually, in experiment the intensity is integrated along the Y

coordinate by the detector. Therefore, we do not take the

Fourier transformation along the Y axis.

In the formal solutions (8a), (8b), we substitute the Fourier

representation (10a), (10b). In addition, using (11a), (11b), we

take the inverse Fourier transformation of the obtained

expressions and return to the initial representation of the

wave®eld amplitudes:

E0�q0x
; z� � E0�q0x

; 0� exp�ÿiq0x
z cot �1� exp�ia0z�

� i
R

dx exp�ÿiq0x
x� exp�ia0z�

� Rz
0

dz0 a �h exp�ih � �u�x� �z0 ÿ z� cot �1; z0��

� Eh�x� �z0 ÿ z� cot �1; z0� exp�ÿia0z0� �12a�
Eh�qhx

; z� � Eh�qhx
; l� exp�ÿiqhx

�l ÿ z� cot �2�
� exp�i��0 ÿ a0��l ÿ z�� � i

R
dx exp�ÿiqhx

x�

� Rl
z

dz0 ah exp�ÿih � �u�xÿ �z0 ÿ z� cot �2; z0��

� exp�i��0 ÿ a0��z0 ÿ z��E0�xÿ �z0 ÿ z� cot �2; z0�:
�12b�

Here we have used the well known expression for the Dirac �
function:

��qÿ q0� � �1=2�� R dx exp�i�qÿ q0�x�: �13�
Thereafter, we take the Fourier transformation of the wave

®elds in integrals in (12a), (12b) and assume the following

boundary conditions of the X-ray diffraction in the Bragg case:

on the entrance surface, E
�in�
0 �q0x

� � E0�q0x
; 0�, and, on the

bottom boundary of the crystal, Eh�qhx
; l� � 0. These

boundary conditions follow as a result of the Fourier trans-

formation of (7). Finally, we obtain the formal solution for the

wave®elds in the directions (K0 + q0) and (KH + qh), respec-

tively:

E0�q0x
; z� � E0�q0x

; 0� exp�ÿi�q0x
cot �1 ÿ a0�z�

� �i=2�� R dx exp�ÿiq0x
x�

� Rz
0

dz0 a �h exp�ih � �u�x� �z0 ÿ z� cot �1; z0��

� exp�ÿia0�z0 ÿ z�� R dqhx
Eh�qhx

; z0�
� expfiqhx

�x� �z0 ÿ z� cot �1�g �14a�
Eh�qhx

; z� � �i=2�� R dx exp�ÿiqhx
x�

� Rl
z

dz0 ah exp�ÿih � �u�xÿ �z0 ÿ z� cot �2; z0��

� exp�i�z0 ÿ z���0 ÿ a0��
R

dq0x
E0�q0x

; z0�
� expfiq0x

�xÿ �z0 ÿ z� cot �2�g: �14b�
Equations (14a), (14b) describe the complex process of

interactions between the Fourier components of the waves,

including the coherent and the diffuse parts.

3. Coherent wavefields

There are three types of X-ray diffraction in crystals. If the

crystal lattice is free from randomly distributed defects, then

the X-ray diffraction is completely coherent. If the crystal

lattice is partially damaged by statistically distributed micro-

defects, then waves scattered coherently and diffusely are

formed. If the whole crystal bulk consists of blocks whose size

is less than the extinction length and these blocks are rotated

relative to each other by small angles (short-range order), then

the X-ray scattering in such a crystal is total incoherent. We

consider the second variant as the general case.
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Figure 1
The diffraction geometry is shown in this ®gure, where K0 is the average
wavevector of the incident wave, Kh is the average wavevector of the
diffracted wave. H is the diffraction vector and ' is the inclination of the
lattice planes with respect to the crystal surface (X axis). The vectors K0,
Kh and H lie within the plane of diffraction (XOZ). The Y axis is oriented
perpendicular to the diffraction plane and lies on the crystal surface. S0

and Sh are the axes of the oblique coordinates (S0, Sh). q0 and qh are the
deviation vectors.
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After some algebra, we write equations (5) in rectangular

coordinates:

@ ~E0�q0x
; z�

@z
� ÿiq0x

cot �1
~E0�q0x

; z�

� i

2�

Z
dx a �h exp�ÿiq0x

x� exp�ih � �u�x; z��

� exp�ÿi�0z�
Z

dqhx
exp�iqhx

x� ~Eh�qhx
; z�

@ ~Eh�qhx
; z�

@z
� iqhx

cot �2
~Eh�qhx

; z�

ÿ i

2�

Z
dx ah exp�ÿiqhx

x�
� exp�ÿih � �u�x; z�� exp�i�0z�
�
Z

dqx0
exp�iq0x

x� ~E0�q0x
; z�:

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
�15�

By the statistical averaging of (15), we take into account two

components of the phase factor:

exp ih � �u� � � � � �h i � �� � f � ��: �16�
In the original Kato (1980a,b) treatment, the static Debye±

Waller factor was denoted as E. In all our previous articles, we

have used only this designation. However, the same letter

designating the wave amplitudes causes dif®culties in the

reading of the paper. Therefore, following Bushuev (1994), we

use the designation f for the static Debye±Waller factor. Using

the formal solutions (12a), (12b), we write the statistical

averaging of the equations (15) for the initial amplitudes:

@Ec
0�q0x

; z�
@z

� i�a0 ÿ q0x
cot �1�Ec

0�q0x
; z�

� i

2�

Z Z
dqhx

dx a �h f exp�i�qhx
ÿ q0x
�x�Ec

h�qhx
; z�

ÿ 1

�2��2
Z Z Z

d ~q0x
dqhx

dx aha �hEc
0� ~q0x

; z�
� exp�ÿi�q0x

ÿ ~q0x
�x�

�
Z

d~x exp�i�qhx
ÿ ~q0x
��xÿ ~x��

�
Zl

z

dz0 h���x; z�����~xÿ �z0 ÿ z� cot �2; z0�i

� exp�i�z0 ÿ z��0� exp�ÿi ~q0x
�z0 ÿ z� cot �2� �17a�

@Ec
h�qhx

; z�
@z

� i�a0 ÿ �0 � qhx
cot �2�Ec

h�qhx
; z�

ÿ i

2�

Z Z
dq0x

dx ah f exp�i�q0x
ÿ qhx

�x�Ec
0�q0x

; z�

� 1

�2��2
Z Z Z

d ~qhx
dq0x

dx aha �hEc
h� ~qhx

; z�
� exp�ÿi�qhx

ÿ ~qhx
�x�

�
Z

d~x exp�i�q0x
ÿ ~qhx

��xÿ ~x��

�
Zz

0

dz0 h����x; z����~x� �z0 ÿ z� cot �1; z0�i

� exp�ÿi�z0 ÿ z��0� exp�i ~qhx
�z0 ÿ z� cot �1�: �17b�

Here, Ec
0;h�q; z� � hE0;h�q; z�i are the amplitudes of the

coherent wave. We assume that the amplitudes of the coherent

wave slowly change with the linear sizes of the defects. Hence,

these amplitudes ~Ec
0;h change more slowly than �� and we can

neglect the correlation h�� ~Ec
0;hi. In other words, the mean

sizes of the statistically distributed defects are less than the

extinction length.

Following the treatment of Kato's SDDT (Kato, 1980a,b),

the differential correlation areas can be given in the form

�̂c
1 � �1=�1ÿ f 2�� R d" exp�ÿi�qhx

ÿ q0x
�"�

� Rlÿz�1

0

d� exp�i���0 ÿ q0x
cot �2��

� h���x; z�����x� "ÿ � cot �2; z� ��i �18�
�̂c

2 � �1=�1ÿ f 2�� R d� exp�ÿi�q0x
ÿ qhx

���

� Rz�1

0

d exp�i ��0 ÿ qhx
cot �1��

� h����x; z����x� �ÿ  cot �1; zÿ  �i: �19�

These differential correlation areas are functions of angular

parameters only in the case of uniform distribution of small

size defects. Using (18) and (19), the equations for the

coherent amplitudes can be rewritten in the form

@Ec
0�q0x

; z�
@z

� i�a0 ÿ q0x
cot �1�Ec

0�q0x
; z�

� i

2�

Z Z
dqhx

dx a �h f exp�i�qhx
ÿ q0x
�x�

� Ec
h�qhx

; z� ÿ 1

�2��2
Z Z Z

d ~q0x
dqhx

dx aha �h

� �1ÿ f 2�Ec
0� ~q0x

; z� exp�ÿi�q0x
ÿ ~q0x
�x��̂c

1

@Ec
h�qhx

; z�
@z

� i�a0 ÿ �0 � qhx
cot �2�Ec

h�qhx
; z�

ÿ i

2�

Z Z
dq0x

dx ah f exp�i�q0x
ÿ qhx

�x�
� Ec

0�q0x
; z�

� 1

�2��2
Z Z Z

d ~qhx
dq0x

dx aha �h�1ÿ f 2�
� Ec

h� ~qhx
; z� exp�ÿi�qhx

ÿ ~qhx
�x��̂c

2:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
�20�

In the ®rst equation of the system (20), the correlation area �̂c
1

can be integrated over the deviation qhx
and, in the second

equation, the correlation area �̂c
2 can be integrated over

deviation q0x
, thus we obtain the integrated correlation

lengths:



��c
1 � �1=2�� R dqhx

�̂c
1

� �1=�1ÿ f 2�� Rlÿz�1

0

d� exp�i���0 ÿ q0x
cot �2��

� h���x; z�����xÿ � cot �2; z� ��i �21�
��c
2 � �1=2�� R dq0x

�̂c
2

� �1=�1ÿ f 2�� Rz�1

0

d exp�i ��0 ÿ qhx
cot �1��

� h����x; z����xÿ  cot �1; zÿ  �i: �22�
If the incident wave is a plane wave (all components with non-

zero q0 are equal to zero) and the registration system works in

the so-called �±2� mode (qh � 0), then the integrated corre-

lation lengths are identical to the correlation lengths [equa-

tions (13), (14)] in our previous paper (Pavlov & Punegov

1998a,b).

Finally, the system of differential equations for the coherent

amplitudes is given as

@Ec
0�q0x

; z�
@z

� i�a0 ÿ q0x
cot �1�Ec

0�q0x
; z� � ia �h fEc

h�q0x
; z�

ÿ 1

2�
aha �h�1ÿ f 2�

Z Z
d ~q0x

dx Ec
0� ~q0x

; z�
� exp�ÿi�q0x

ÿ ~q0x
�x� ��c

1

@Ec
h�qhx

; z�
@z

� i�a0 ÿ �0 � qhx
cot �2�Ec

h�qhx
; z�

ÿ iah fEc
0�qhx

; z� � 1

2�
aha �h�1ÿ f 2�

�
Z Z

d ~qhx
dx Ec

h� ~qhx
; z�

� exp�ÿi�qhx
ÿ ~qhx

�x� ��c
2:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
�23�

Here, we assume that defects are uniformly distributed in the

direction of the X axis. Then the correlation lengths can be

taken out of the integral:

@Ec
0�q0x

; z�
@z

� i�a0 ÿ q0x
cot �1�Ec

0�q0x
; z� � ia �h fEc

h�q0x
; z�

ÿ aha �h�1ÿ f 2� ��c
1Ec

0�q0x
; z�

@Ec
h�qhx

; z�
@z

� i�a0 ÿ �0 � qhx
cot �2�Ec

h�qhx
; z�

ÿ iah fEc
0�qhx

; z� � aha �h�1ÿ f 2� ��c
2Ec

h�qhx
; z�:

8>>>>>>>><>>>>>>>>:
�24�

Since the tangential projections of the wavevectors are iden-

tical for coherent components Ec
0 and Ec

h, the Fourier

component Ec
0�q0x

; z� corresponds to the Fourier component

Ec
h�qhx

; z�, where qhx
� q0x

. Then analytical solutions of the

system of equations (24) can be written as

Ec
0�q0x

; z� � A1 exp�i��0 � �1�z� � A2 exp�i��0 ÿ �1�z�
Ec

h�q0x
; z� � k1A1 exp�i��0 � �1�z� � k2A2 exp�i��0 ÿ �1�z�;

�25�
where

a1 � i�a0 ÿ q0x
cot �1� ÿ aha �h�1ÿ f 2� ��c

1; a2 � ia �h f ;

a3 � ÿiahf ; a4 � i�a0 ÿ �0 � q0x
cot �2� � aha �h�1ÿ f 2� ��c

2

�26�
and

��0 � �1� � ÿ
i

2
fa1 � a4 � ��a1 � a4�2 ÿ 4�a1a4 ÿ a2a3��1=2g:

�27�
To obtain coef®cients k1;2, the general solution (25) should be

substituted into the differential equations (24).

k1 � 2a3=fa1 ÿ a4 � ��a1 � a4�2 ÿ 4�a1a4 ÿ a2a3��1=2g;
k2 � 2a3=fa1 ÿ a4 ÿ ��a1 � a4�2 ÿ 4�a1a4 ÿ a2a3��1=2g: �28�

The coef®cients A1,2 can be obtained from conditions in the

boundary. Since the Fourier components of the coherent

amplitude are independent of each other, their calculations

can be made for each Fourier component separately.

3.1. Semi-infinite crystal

By consideration of the X-ray diffraction in a semi-in®nite

crystal, we take into account that only one of two components

for each wave should remain in the analytical solution (25).

Choosing between them is based upon the condition that

the intensity of the penetrating wave should be decreased

inside the semi-in®nite crystal. Therefore, the condition

Im��0 � �1�> 0 can be used as a basic guideline in deciding

which component of the wave to employ. Also, it is possible

to neglect the term containing the correlation length. The

modi®ed coef®cients (26) are

�a1 � i�a0 ÿ q0x
cot �1�; �a2 � ia�hf ;

a3 � ÿiahf ; �a4 � i�a0 ÿ �0 � q0x
cot �2�: �29�

The re¯ection coef®cient for any Fourier component of the

coherent wave can be written as

Rs � �1=b1=2�k1;2; �30�
where the rule of choosing between the coef®cients k1;2 is the

same as the above-mentioned procedure for determination of

the sign in the exponent of the analytical solution (25).

4. Diffuse wavefields

We consider a yield of the diffuse scattered waves within the

framework of SDDT. The intensities of the diffuse waves are

differences between the total intensities and the coherent

intensities:

Id
0;h�qx; z� � hE0;h�qx; z�E�0;h�qx; z�i ÿ hE0;h�qx; z�ihE�0;h�qx; z�i:

�31�
Derivation of the equations for the diffuse intensities is closely

similar to that applied to obtain the equations for the coherent

amplitudes. For the total intensities, the following system of

equations can be written:
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@I0�q0x
; z�

@z
� E�0�q0x

; z� @E0�q0x
; z�

@z

� �
� @E�

0
�q0x

; z�
@z

E0�q0x
; z�

� �
@Ih�qhx

; z�
@z

� E�h�qhx
; z� @Eh�qhx

; z�
@z

� �
� @E�

h
�qhx

; z�
@z

Eh�qhx
; z�

� �
:

8>>>>>>>>>>>><>>>>>>>>>>>>:
�32�

We consider terms on the right-hand side of the system of

equations (32) in detail.

E�0�q0x
; z� @E0�q0x

; z�
@z

� �
� i�a0 ÿ q0x

cot �1�I0�q0x
; z� � i

2�

Z
dx a �h exp�ÿiq0x

x�

�
Z

dqhx
exp�iqhx

x�hE�0�q0x
; z� exp�ih � �u�x; z��

� Eh�qhx
; z�i �33�

E�h�qhx
; z� @Eh�qhx

; z�
@z

� �
� ÿi��0 ÿ a0 ÿ qhx

cot �2�Ih�qhx
; z�

ÿ i

2�

Z
dx ah exp�ÿiqhx

x�
Z

dq0x
exp�iq0x

x�
� hE�h�qhx

; z� exp�ÿih � �u�x; z��E0�q0x
; z�i: �34�

The correlation on the right-hand side of equation (33) can be

given in the form

hE�0�Ehi � f hE�0Ehi � h�E�0���Ehi � hE�0���Eh�i: �35�

After substitution of the formal solutions (14a), (14b), we

obtain for the last two terms on the right-hand side of equation

(35):

h�E�0���Ehi �
i

2�
ah�1ÿ f 2�

Z
d ~q0x
hE�0�q0x

; z�E0� ~q0x
; z�i

� exp�ÿi�qhx
ÿ ~q0x
�x��̂c

1 �36�
hE�0���Eh�i � ÿ

i

2�
a��h�1ÿ f 2�

Z
d ~qhx
hEh�qhx

; z�E�h� ~qhx
; z�i

� exp�i�q0x
ÿ ~qhx

�x��̂c�
2 : �37�

Similarly, we can transform the correlation hE�h��E0i in

equation (34).

Finally, we obtain the equations for the total intensities in

the following form:

@I0�q0x
; z�

@z
� ia0I0�q0x

; z� � ia �h f hE�0�q0x
; z�Eh�q0x

; z�i

ÿ aha �h�1ÿ f 2�I0�q0x
; z� ��c

1 �
1

2�
ja �hj2�1ÿ f 2�

�
Z

dqhx
hEh�qhx

; z�E�h�qhx
; z�i�̂c�

2 � c:c:

@Ih�qhx
; z�

@z
� ÿi��0 ÿ a0�Ih�qhx

; z�
ÿ iah f hE�h�qhx

; z�E0�qhx
; z�i

� aha �h�1ÿ f 2�Ih�qhx
; z� ��c

2 ÿ
1

2�
jahj2�1ÿ f 2�

�
Z

dq0x
hE0�q0x

; z�E�0�q0x
; z�i�̂c�

1 � c:c:

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
�38�

By analogy with the procedure used for derivation of the

equations for the total intensities, we develop the equations

for the coherent intensities:

@Ic
0�q0x

; z�
@z

� ia0Ic
0�q0x

; z� � ia �h fEc�
0 �q0x

; z�Ec
h�q0x

; z�
ÿ aha �h�1ÿ f 2�Ic

0�q0x
; z� ��c

1 � c:c:

@Ic
h�qhx

; z�
@z

� i�a0 ÿ �0�Ic
h�qhx

; z� ÿ iah fEc�
h �qhx

; z�Ec
0�qhx

; z�
� aha �h�1ÿ f 2�Ic

h�qhx
; z� ��c

2 � c:c:

8>>>>>>>><>>>>>>>>:
�39�

To obtain the equations for the diffuse intensities, the system

of equations for the coherent intensities (39) should be

subtracted from the system of equations for the total intensity

(38). After some algebra, we obtain for the diffuse intensities:

@Id
0 �q0x

; z�
@z

� ia0Id
0 �q0x

; z� ÿ aha �h�1ÿ f 2�Id
0 �q0x

; z� ��c
1

ÿ Id
0 �q0x

; z�
Zl

z

dz0 aha �h f 2 exp�i�z0 ÿ z��0�

� h ~Ed�
0 �q0x

; z� ~Ed
0�q0x

; z0�i0
� expfÿiq0x

��z0 ÿ z� cot �2�g

� Id
h �q0x

; z�
Zz

0

dz0ja �hj2f 2 exp�i�z0 ÿ z��0�

� h ~Ed
h�q0x

; z� ~Ed�
h �q0x

; z0�iH
� expfÿiq0x

��z0 ÿ z� cot �2�g
� 1

2�
ja �hj2�1ÿ f 2�

Z
dqhx

Ic
h�qhx

; z��̂c�
2

� 1

2�
ja �hj2�1ÿ f 2�

Z
dqxh

Id
h �qhx

; z��̂c�
2 � c:c:

�40�



@Id
h �qhx

; z�
@z

� ÿi��0 ÿ a0�Id
h �qhx

; z� � aha �h�1ÿ f 2�Id
h �qhx

; z� ��c
2

� Id
h �qhx

; z�
Zz

0

dz0 aha �h f 2 exp�ÿi�z0 ÿ z��0�

� h ~Ed�
h �qhx

; z� ~Ed
h�qhx

; z0�iH
� expfiqhx

��z0 ÿ z� cot �2�g

ÿ Id
0 �qhx

; z�
Zl

z

dz0 jahj2f 2 exp�ÿi�z0 ÿ z��0��

� h ~Ed
0�qhx

; z� ~Ed�
0 �qhx

; z0�i0
� expfiqhx

��z0 ÿ z� cot �2�g
ÿ 1

2�
jahj2�1ÿ f 2�

Z
dq0x

Ic
0�q0x

; z��̂c�
1

ÿ 1

2�
jahj2�1ÿ f 2�

Z
dq0x

Id
0 �q0x

; z��̂c�
1 � c:c:

�41�
Here, relations within h i0 and h iH are normalized to the

diffuse intensities Id
0 and Id

h , respectively. Now we enter into

consideration of the correlation lengths of the diffusely scat-

tering waves:

�ÿ0��0; q0x
; z� � Rlÿz�1

0

d� exp�i���0 ÿ q0x
cot �2��

� h ~Ed�
0 �q0x

; z� ~Ed
0�q0x

; z� ��i0 �42�

�ÿH��0; q0x
; z� �

Zz

0

d exp�ÿi ��0 ÿ q0x
cot �2��

� h ~Ed
h�q0x

; z� ~Ed�
h �q0x

; zÿ  �iH : �43�
Finally, the equations for the diffuse intensities can be

rewritten as

@Id
0 �q0x

; z�
@z

� ia0Id
0 �q0x

; z� ÿ aha �h�1ÿ f 2�Id
0 �q0x

; z� ��c
1

ÿ aha �h f 2Id
0 �q0x

; z� �ÿ0 � ja �hj2f 2Id
h �q0x

; z� �ÿH

� 1

2�
ja �hj2�1ÿ f 2�

Z
dqhx

Id
h �qhx

; z��̂c�
2

� 1

2�
ja �hj2�1ÿ f 2�

Z
dqhx

Ic
h�qhx

; z��̂c�
2 � c:c:

�44�
@Id

h �qhx
; z�

@z
� ÿi��0 ÿ a0�Id

h �qhx
; z� � aha �h�1ÿ f 2�Id

h �qhx
; z� ��c

2

� aha �h f 2Id
h �qhx

; z� �ÿ�h ÿ jahj2f 2Id
0 �qhx

; z� �ÿ�0
ÿ 1

2�
jahj2�1ÿ f 2�

Z
dq0x

Id
0 �q0x

; z��̂c�
1

ÿ 1

2�
jahj2�1ÿ f 2�

Z
dq0x

Ic
0�q0x

; z��̂c�
1 � c:c:

�45�
The ®rst terms on the right-hand side of equations (44) and

(45) describe the photoelectric absorption, the second ones

determine the diffuse absorption, the third ones represent the

attenuation as a result of diffraction of the diffuse waves, the

fourth and the ®fth ones are responsible for the diffraction of

the diffuse waves, and the sixth ones de®ne the sources of the

diffuse waves inside the crystal.

In the case of kinematical diffraction, the system of equa-

tions for the coherent amplitudes (24) is simpli®ed:

@Ec
0�q0x

; z�
@z

� i�a0 ÿ q0x
cot �1�Ec

0�q0x
; z�

@Ec
h�qhx

; z�
@z

� i�a0 ÿ �0 � qhx
cot �2�Ec

h�qhx
; z�

ÿ iah fEc
0�qhx

; z�:

8>>>>><>>>>>:
�46�

Recently (Faleev et al., 1999; Pavlov et al., 1999), our approach

in the semidynamical form was used for the determination of

the principal parameters of vertically coupled InAs quantum

dots (QDs) self-assembled in a GaAs matrix. The statistically

disturbed QDs were described as kinds of structural defects

and only the coherent intensity of the diffracted wave was

taken into account.

For the diffuse intensities in the kinematical case, we obtain

from (44) and (45):

@Id
0 �q0x

; z�
@z

� ia0Id
0 �q0x

; z� � c:c: �47�
@Id

h �qhx
; z�

@z
� ÿi��0 ÿ a0�Id

h �qhx
; z� ÿ jahj2f 2Id

0 �qhx
; z� �ÿ�0

ÿ 1

2�
jahj2�1ÿ f 2�

Z
dq0x

Id
0 �q0x

; z��̂c�
1

ÿ 1

2�
jahj2�1ÿ f 2�

Z
dq0x

Ic
0�q0x

; 0�
� exp�ÿ2 Im�a0�z��̂c�

1 � c:c: �48�
In the ideal case, if a plane wave with intensity of unity falls on

a crystal, there is only one Fourier component in the form of a

delta function in the incident beam. And if the registration

system works in the so-called �±2� mode (qh � 0), then one

can obtain from (24), (44) and (45) the equation for the plane-

wave diffraction (Pavlov & Punegov, 1998a,b).

5. Concluding remarks

The new approach to Kato's variant of SDDT for simulating

the intensity distribution in the reciprocal space is proposed in

the case of statistically distributed microdefects. Compared to

other approaches (HolyÂ et al., 1992, 1993, 1994; Darhuber et

al., 1997), our approach describes more correctly the scat-

tering process in thick structures, where one has to take into

account the dynamical interaction inside the wave®elds.

APPENDIX A
For presentation, in the triple-crystal scheme we use a stan-

dard (�n;ÿn;�n) arrangement (Iida & Kohra, 1979; Zaum-
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seil & Winter, 1982a,b). However, instead of � and � (Iida &

Kohra, 1979), for angular deviations we employ " and !,

respectively. The differential variations of the scattering

vector q � KH ÿ K0 near the Bragg re¯ection are given by

(see Appendix in Herres et al., 1996):

�qz � ÿk�cos��B � '�"� 2 sin��B� sin�'�!� �49�
�qx � ÿk�sin��B � '�"ÿ 2 sin��B� cos�'�!�: �50�

These equations (49), (50) can be obtained from the simple

geometrical construction for deviation vectors �K0 and �KH

(see Kazimirov et al., 1990):

�K0z � k cos��B ÿ '�!; �K0x � ÿk sin��B ÿ '�!; �51�
�KHz � ÿk cos��B � '��"ÿ !�;
�KHx � ÿk sin��B � '��"ÿ !�; �52�

since �q � �KH ÿ �K0. In the case of coherent scattering, the

components �K0x and �KHx should be the same if the crystal is

homogeneous in the direction parallel to its surface. It results

in " � !�1� b� for coherent plane waves (so-called �±2� scan

scheme) and transforms equations (49) and (50) as

�qz � ÿk! sin�2�B�= sin��B � '� �53�
�qx � 0: �54�

Here, in equation (53), �qz is identical to the parameter (ÿ�0)
(9), exclusive of the term including the refraction effect.

In this paper, we take into consideration the pseudo-plane

incident waves. This means that the position of the average

wavevector of the incident wave determined by ! is not

enough to describe the complex structure of the incident

waves. Hence, we have to introduce the additional vector q0,

which describes the deviation of the Fourier-component

wavevector from the average wavevector K0 of the incident

wave. By analogy, we may assume that

q0z � k cos��B ÿ '�!0; q0x � ÿk sin��B ÿ '�!0; �55�
where !0 describes the deviation of the wavevector of any

Fourier component of the incident wave®eld from the average

wavevector K0. In the case of an ideal plane wave, there is only

one nonzero Fourier component with !0 � 0. The components

of the vector qH are given by

qHz � ÿk cos��B � '��"ÿ !�1� b��;
qHx � ÿk sin��B � '��"ÿ !�1� b��: �56�
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